SSIPMT RAIPUR

Shri Shankaracharya Institute of Professional Management \& Technology
Department of Electronics and Telecommunication Engineering
Class Test - I Session- July- Dec, 2022 Month- December
Sem- ET\&T 5 ${ }^{\text {th }}$ Subject- Design of Electronics Circuit - C028512(28)
Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.
Q.

NO.

Questions

The configuration of dual input, balanced output differential amplifier is given. Assume Si transistor with $\mathrm{h}_{\mathrm{ie}}=2.8 \mathrm{k} \Omega$ and $\mathrm{h}_{\mathrm{fe}}=\beta=100$.
Calculate
(i) Operating point values.
(ii) Differential gain.
(iii) Common mode gain
(iv) CMRR.
(v) Output if $\mathrm{V}_{\mathrm{s} 1}=70 \mathrm{mV}$ peak to peak at 1 kHz and $\mathrm{V}_{\mathrm{s} 2}=40 \mathrm{mV}$ peak to peak.

For an Op-Amp the value of R_{f} and R_{1} are $100 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$ respectively. It is an inverting amplifier with input offset voltage drift of
2. $14 \mu \mathrm{~V} /{ }^{\rho} \mathrm{C}$ and input offset current drift of $0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$. The amplifier is null at $25^{\circ} \mathrm{C}$. Calculate the error voltage and output at $45^{\circ} \mathrm{C}$ if input is 7 mV dc.

Draw the circuit of Dual Input Balanced Output differential amplifier
3. and derive the expression of differential mode gain $\left(\mathrm{A}_{\mathrm{t}}\right)$ using h parameter model.
4. Explain the input offset voltage compensation technique used in opamp.

Draw and explain the schmitt trigger circuit with output waveform and hysteresis curve.
Find the R_{9} \& R_{f} in practical integrator so that peak gain is $20 d B$ and
6. gain is 3 dB down from its peak when $\mathrm{w}=10000 \mathrm{rad} / \mathrm{sec}$, use capacitance of $0.01 \mu \mathrm{~F}$.
7. Explain and derive mathematical equation of Log amplifier.
[8] Applying COI 8] Applying CO 1
[8] Understanding CO1
[8] Understanding CO 2
[8] Applying CO 2
[8] Understanding CC2

Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Electronics and Telecommunication Engineering

SSIPMT
Class Test - I Session- July. - Dec, 2022 Month- December
Sem- ET\&T 5 ${ }^{\text {th }}$ sem Subject-Advance Data Structure- C022535(022)
Time Allowed: 2 hrs Max Marks: 40
Note: - All questions are compulsory. .

Q.NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	What is linear data Structure, also list example of it with example.	[2]	Remembering	CO 1
2.	What is ADT?	[2]	Remembering	CO 1
3.	What is internal pointer variable?	[2]	Remembering	CO 2
4.	```Find the output of the following code: void man() \{ char S1[80] = \{"COMPUTER" \(\}\) char S2[80] = \{"Marc" \(\}\) printf("Length (\%s) \(=\% \mathrm{~d}\) ", S 1, strlen(S1)); printf("'Length (\%s) \(=\% \mathrm{~d}\) ", S 1 , \(\operatorname{strlen}(\mathrm{S} 2)\)); \}```	[2]	Understanding	CO1
5.	What is linked list and stack?	[3]	Understanding	CO 1

5. What is linked list and stack?

Consider the linear array NAME in fig. below, which is sorted alphabetically.

NAME
a) Find NAME [2], NAME [4], NAME [7]

6. | Adam |
| :--- |
| Evan |
| |
| John |
| Lane |
| |
| Smith |

b) Suppose David is to be inserted into the
[3] Understanding array. How many names must be moved to new locations.
c) Suppose John is to be deleted from the array. How many names must be moved to new locations?
7. Differentiate Linear data structure and non-linear data/tree structure?

$[3]$	Understanding	CO 2
$[4]$	Remembering	CO 2

8. Write a program to print the prime numbers less than N .

4] Remembering
What is the output of the following program?
int main () $\{$
9. int $\mathrm{i}=5, \mathrm{j}=10$;
4] Remembering CO 1
$\mathrm{j}=\mathrm{i}++, \mathrm{j}++?(\mathrm{i}++, \mathrm{j}++)$? $\mathrm{J}++\mathrm{j}++$;
cout<<" $\mathrm{i}=" \ll \mathrm{i} \ll " \quad " \ll " \mathrm{j}=" \ll \mathrm{j} \ll$ endl; ;

10..	What is Tree and Binary search Tree, with example?	$[5]$	Remembering	CO2
11.	What is heap and explain its types of heaps?	$[5]$	Understanding	CO2
12.	Write a code, To multiply x by 8 without using multiplication $\left(^{*}\right)$ operator.	$[5]$	Understanding	CO1

SSIPMT
RAIPUR

Shri Shankaracharya Institute of Professional Management \& Technology Department of Electronics and Telecommunication Engineering

Class Test-1, Month- December
Sem- ET\&T $5^{\text {th }}$ Subject- Digital Communication- C028511(028)
Time Allowed: 2 hrs
Max Marks: 40
Note:- Attempt any 5 question. All questions carry equal marks.
Q. NO

Questions

1. State and prove sampling theorem for low pass signal

Marks	Levels of
Bloom's	
taxonomy	\quad COs

i. What do you mean by Quantization?
2.
ii. Derive an expression for Mean square value of quantization error for PCM
3. Compare: PAM, PDM, PPM
4. Explain with the help of a block diagram the transmitter and Receiver of a PCM
5.

Explain Delta Modulation along with the waveform and Block diagram. Also explain types of noises in DM.
6.

Explain Differential Pulse Code Modulation along with Generation and
Demodulation Block diagram
[8] Understanding CO1
[8] Applying CO1
[8] Understanding CO1
[8] Understanding CO2
[8] Understanding CO2
[8] Understanding CO2

Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Electronics and Telecommunication Engineering

SSIPMT
RAIPUR

Class Test - I, Month- December

Sem- ET\&T $5^{\text {th }}$ Subject- Digital Communication- C028511(028)

Time Allowed: 2 hrs

Note: - Attempt any 5 question. All questions carry equal marks.
Q. NO.

Questions

1. State and prove sampling theorem for low pass signal
iii. What do you mean by Quantization?
2.

iv. Derive an expression for Mean square value of quantization error for PCM
3. Compare: PAM, PDM, PPM
4.

Explain with the help of a block diagram the transmitter and Receiver of a PCM
5.

Explain Delta Modulation along with the waveform and Block diagram. Also explain types of noises in DM.
Explain Differential Pulse Code Modulation along with Generation and Demodulation Block diagram

Max Marks: 40

Levels of
Marks Bloom's
cos
taxonomy
[8] Understanding CO1
[8] Applying CO1

8] Understanding CO1
[8] Understanding CO2
[8] Understanding CO2
[8] Understanding CO 2

Shri Shankaracharya Institute of Professional Management \& Technology

Department of Electronics and Telecommunication Engineering

Sem- ET\&T 5 ${ }^{\text {th }}$ Subject- ACS

Time Allowed: 2 hrs Max Marks: 40
Note: - Attempt any 5 question. All questions carry equal marks

$\begin{gathered} \text { Q. } \\ \text { NO. } \end{gathered}$	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Derive $K p, K v$ and $K a$ and comment on steady state error for type 0,1 , 2 and 3 system. Also represent in tabular form.	[8]	understanding	2
2.	Derive expression for rise time, peak time, maximum overshoot and settling time for std. second order system subjected to unit step input. $\{0<\mathrm{r}<1\}$	[8]	Application	1
3.	Construct Polar plot for $\mathrm{G}(\mathrm{s})$ and comment on stability. $\mathrm{TF}=10 / \mathrm{s}^{2}(\mathrm{~s}+5)(\mathrm{s}+7)(\mathrm{s}+9)$	[8]	Application	1
4.	Construct Root locus for $\mathrm{G}(\mathrm{s})$ and comment on stability. $\mathrm{TF}=\mathrm{K} / \mathrm{s}(\mathrm{~s}+4)\left(\mathrm{s}^{2}+2 \mathrm{~S}+2\right)$	[8]	Application	2
5.	Construct Root locus for $G(s)$ and comment on stability. $\mathrm{TF}=\mathrm{K}(\mathrm{S}+1)(\mathrm{S}+3) /(\mathrm{s}+5)$	[8]	Application	2
6.	Write the steps involved in construction of Root Locus and discuss the criterion for stability	[8]	Understanding	2

Shri Shankaracharya Institute of Professional Management \& Technology Department of Electronics and Telecommunication Engineering

Sem- ET\&T 5 ${ }^{\text {th }}$ Subject- ACS

Time Allowed: 2 hrs Max Marks: 40
Note: - Attempt any 5 question. All questions carry equal marks.

| Q.
 NO. | Questions | Levels of
 Bloom's
 taxonomy | COs |
| :---: | :--- | :---: | :---: | :---: | :---: |

Class Test - I Session- July-Dec, 2022 Month- December
Sem- ET\&T 5 ${ }^{\text {th }}$ Subject- Microcontroller \& Embedded System
Time Allowed: 2 hrs Max Marks: 40

$\begin{aligned} & \text { Note:- } \\ & \text { Q. } \\ & \text { No. } \end{aligned}$	Solve any five question. ${ }^{\text {Questions }}$	Marks	Levels of Bloom's taxonomy	COs
1.	Write Short notes on : a. Features of $8051,8052,8031,8751$ and AT89C51. b. Harvard Architecture Vs Von-Neumann Architecture.	[8]	Understanding	CO1
2.	Define addressing modes of 8051 \& also explain register organization .	[8]	Apply	CO1
3.	Write an ALP to generate a square wave of frequency 2 KHz with 66% duty cycle on port pin P1.2. Use timer 1 in mode 2. Assume crystal oscillator frequency is 22 MHz .	[8]	Apply	CO 2
4.	Write a program to find the maximum number from the ten 8 -bit numbers. Assume numbers stored from 2000 H and result should be stored in R3 register.	[8]	Apply	CO2
5.	WAP to monitor the switch and perform the following (i) if seitch=0, send a msg "HELLO" (ii) if switch $=1$, send a msg "GOOD BYE" Assume that switch is connected to pin P $2.0 \&$ boud rate is 9600 .	[8]	Design	CO2
6.	Discuss interrupt structure of 8051 microcontroller. Also discuss interrupt versus polling.	[8]	Understanding	CO2

Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Electronics and Telecommunication Engineering

SSIPMT Class Test-I Session- July-Dec, 2022 Month- December
raipur Sem-ET\&T 5 ${ }^{\text {th }}$ Subject- Microcontroller \& Embedded System
Time Allowed: 2 hrs Max Marks: 40

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	Solve any five question.	Marks	Levels of Bloom's taxonomy	COs
1.	Write Short notes on : a. Features of $8051,8052,8031,8751$ and AT89C51. b. Harvard Architecture Vs Von-Neumann Architecture.	[8]	Understanding	$\mathrm{CO1}$
2.	Define addressing modes of 8051 \& also explain register organization .	[8]	Apply	CO 1
3.	Write an ALP to generate a square wave of frequency 2 KHz with 66% duty cycle on port pin P1.2. Use timer 1 in mode 2. Assume crystal oscillator frequency is 22 MHz .	[8]	Apply	CO 2
4.	Write a program to find the maximum number from the ten 8 -bit numbers. Assume numbers stored from 2000 H and result should be stored in R3 register.	[8]	Apply	CO 2
5.	WAP to monitor the switch and perform the following (i) if seitch $=0$, send a msg "HELLO" (ii) if switch $=1$, send a msg "GOOD BYE" Assume that switch is connected to pin P 2.0 \& boud rate is 9600 .	[8]	Design	CO2
6.	Discuss interrupt structure of 8051 microcontroller. Also discuss interrupt versus polling.	[8]	Understanding	CO 2

